

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

On the Use of the Two-component Liquid in the Critical Point of Stratification for the Optical Detection of the Gravitational Waves

V. R. Nagibarov^a; S. A. Zeldovich^a

^a Kazan-Physical-Technical Institution of A.S., USSR

To cite this Article Nagibarov, V. R. and Zeldovich, S. A.(1971) 'On the Use of the Two-component Liquid in the Critical Point of Stratification for the Optical Detection of the Gravitational Waves', *Spectroscopy Letters*, 4: 7, 209 — 212

To link to this Article: DOI: 10.1080/00387017108064640

URL: <http://dx.doi.org/10.1080/00387017108064640>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ON THE USE OF THE TWO-COMPONENT LIQUID
 IN THE CRITICAL POINT OF STRATIFICATION
 FOR THE OPTICAL DETECTION OF THE GRAVI-
 TATIONAL WAVES

V.R. Nagibarov, S.A. Zeldovich

Kazan-Physical-Technical
 Institution of A.S. USSR

The axis of the vessel \overrightarrow{z} with the two-component liquid in the critical point of stratification is oriented along the direction of trial mass in the field of gravitational wave. Suppose that vessel sides are less than the wave length and the rate of equilibrium establishment in such system greater than the rate of the gravitational field of the wave in the place of solution arrangement. Mark the coordinate of the liquid stratification boundary in the constant gravitational field parallel to \overrightarrow{z} as ℓ_0 .

If such solution is lighted along \overrightarrow{z} by the monochromatic light source of the frequency ν_0 the Mandelshtam-Brillouin component (MBC) scattered by the liquid layer at $z = \ell$ with test the periodic displacement with the amplitude $\Delta\nu_G$ which may be easy determined by use of [1-4] :

$$\Delta\nu_G = 0,17 \frac{\Delta\nu_0}{C_1} \left\{ \left[\frac{6}{B} \left(M_1 - V_1 \frac{M k_p}{V k_p} \right) \right] (\ell - \ell_0)^{1/3} \right\} \left(\frac{K_G T_G}{\pi c} \right)^{1/6} = \\ = A (\ell - \ell_0)^{1/3} (T_G)^{1/6}; \quad \Delta\nu_G(t) = \Delta\nu_G \cos^{2/3} \omega_G t \quad , \quad (1)$$

where ω_g - gravitational wave frequency, t - time, K_G - gravitational constant, I_g - amplitude of gravitational flow intensity, $\Delta V_o = 2nV_o (\mathcal{V}/c) \sin \frac{\theta}{2}$ Mandelshtam-Brillouin displacement, n - refraction exponent, C - rate of the light, \mathcal{V} - rate of the sound in mixture in ordinary (noncritical) state, $M_{kp} = M_i C_i^{kp} + M_2 C_2^{kp}$, $V_{kp} = V_i C_i^{kp} + V_2 C_2^{kp}$; $C_i^{kp} = 1 - C_i^{kp}$, M_i , V_i , C_i , M_i ($i = 1, 2$) - molecular weight, volume, concentration and chemical potential of the i -th component, kp - the corresponding values in the critical point, $B = (\partial^3 M_i / \partial C_i^3)$.

In derivation of (1) the attraction force of Earth (or other celestial bodies) is supposed to be compensated (for example, the experiment of Sputnik), θ - angle between direction of scattering and \overrightarrow{z} - axis.

Evaluate ΔV_G , which may be provided by cosmic of the gravitational radiation if to use nitrobenzol solution-normal hexane with nitrobenzol concentration $C_1 = 0,4$ normal parts as in [2].

We find for such mixture near the upper temperature of stratification $T_c = 20 \pm 0,5^\circ C$ accounting experimental data from (1) given in [2] ($T - T_c = 1,1^\circ C$, $\ell - \ell_o = 10 \text{ mm}$)

$$\Delta V_G = 3 \cdot 10^7 \left(K_G I_G / \pi c \right)^{1/6} \text{ c/s} \quad (2)$$

So we find from (2) $\Delta V_G = 300 \text{ c/s}$ for stars ζBoo and ζSge which are at a short distance to use and producing the flow of gravitational radiation in the neighbourhood of

Earth $I_G \approx 10^{-11} \frac{\text{erg}}{\text{cm}^2 \text{sec}}$ with periods $T_{o1} \approx 0.194 \text{ days}$ and $40,5 \text{ min.}$ correspondently.

This value exceeds greatly the linewidth of the modern gaseous lasers. If the experimental conditions allow to determine $\Delta\nu_G = 1 \text{ c/s}$ we find from (2) that radiation flow with intensity $(I_G)_{\min} \sim 10^{-27} \frac{\text{erg}}{\text{cm}^2 \text{sec}}$ may be registered

by the method suggested. Such flows may be generated even in the laboratories (see, for example, [5-7]).

It is perspective to use the low-temperature and quantum liquid for the noise decrease. For example the analogous effect may be expected in the mixture $\text{He}^3 - \text{He}^4$ ($T = 0.84^\circ\text{K}$ at $c_1 = 0.63 \text{ He}^3$)

From this example the great possibilities of the use of substances in critical states where their compressibilities are very large for the purposes of registration of gravitational radiation.

We thank professor U.H. Kopvilljem for useful discussion.

L I T E R A T U R A .

1. A.V. Voronel, M.Sh Gitterman, JETPh, 48, 1433, 1965.
2. I.M. Arefjev, N.V. Shilin. Letters JETPh, 10, 138, 1969.
3. V.B. Braginsky, UVN, 86, 433, 1965.
4. W.Ch. Kopvilljem, V.R. Nagibarov. JETPh Letters, 2, 529, 1965.
5. J. Weber, General Relativity and Gravitational waves. New York, 1961.

6. W.Ch. Kopviljem, V.R. Nagibarov, Pub. of Institutions (Physics), 9, 66, 1967, JETPh, 56, 201, 1969.
7. V.B. Braginsky, V.N. Rudencko. Relativity investments, UVN, 100, 395, 1970.